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FUNDY4 USERS’ MANUAL

ABSTRACT

A 3-D diagnostic model for continental shelf circulation studies is described. The model
solves the linearized shallow water equations, forced by tidal or other barotropic boundary
conditions, wind, and/or density gradient, using linear Finite Elements. Solutions are
obtained in the frequency domain; the limit of zero frequency represents the steady state.
The model is written in ANSI FORTRAN 77.

The overall organization of the FUNDY4 system is presented. Detailed specifications are
provided for required data files and user-written FORTRAN subroutines. A comprehensive
example is given. The model theory and numerical method are described in an appendix.



OVERVIEW

FUNDY4 is a FORTRAN 77 implementation of a finite element solution of the 3-D shallow
water equations, as described in Lynch and Werner (1987) and Lynch et al (1990) (herein,
LW87 and LWGL90). The model is limited to the linearized equations, with externally
specified density field. Solution is obtained in the frequency domain for the complex
amplitudes of the fluid velocity and sea surface elevation. The model is forced by tidal
or other barotropic boundary conditions, wind, and/or fixed baroclinic pressure gradient,
all acting at a single frequency (including zero) and specified by the user. Eddy viscosity
closure is used in the vertical, with a linearized partial-slip condition enforced at the
bottom. The spatial distribution of viscosity and bottom stress coefficient is arbitrary,
and at the discretion of the user. The primary use of FUNDY4 is for preliminary tidal and
diagnostic seasonal (steady-state) computations, as a prelude to more complete nonlinear
and/or prognostic computations. The governing equations and numerical method are
detailed in the Appendix.

The model uses a conventional horizontal grid of linear triangles, which must be provided
by the user. A 3-D mesh is automatically constructed within FUNDY4 from these as
follows. The horizontal mesh is projected downward to the bottom in perfectly vertical
lines, and each line is discretized into the same number of vertical elements. These are then
connected horizontally in the identical topology as the original 2-D mesh, thereby filling
the volume with 6-node linear elements. Effectively, this creates an (z,y,0) coordinate
system. The detailed local vertical mesh spacing is arbitrary, at the discretion of the user.
There is no requirement for uniform vertical meshing; but the above procedure does require
that the number of nodes on each vertical line be the same. (See Figure 1).

The software system 1is illustrated in Figure 2. There are three main programs:

FUNDY4

This is the core program, which performs all finite element assembly and solution opera-
tions, according to LW87 and LWGL90. FUNDY4 reads a formatted input file and writes
a formatted output file, the latter containing a summary of the input. On execution the
program asks for the names of these files. The user need never see the details of FUNDY4.

USER.Subs

FUNDY4 must be linked to four user-built subroutines in order to specify the physical
forcing, the vertical structure, and the manner in which results are to be written.

Subroutine BC specifies barotropic boundary conditions. There are three types of
barotropic boundary conditions which require data from Subroutine BC:

¢ fixed elevation

¢ fixed nonzero normal velocity

¢ fixed nonzero velocity (used only at mesh corners).
Other types of barotropic boundary conditions (including geostrophic outflow and land
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boundaries) are mathematically homogenous and require no data input here. In addition
to the BC’s, this subroutine also establishes the frequency of the motion.

Subroutine ATMOS specifies the atmospheric forcing, i.e. the combined effects of
wind stress and barometric pressure gradient.

Subroutine VERTGRID specifies the number of nodes in the vertical; the vertical
node positioning under each horizontal node; and the distribution of eddy viscosity, bottom
slip coefficient, and density.

Subroutine OUTPUT is responsible for all output of computed results.

These four subroutines must be provided in ANSI FORTRAN 77 and linked to FUNDY4.
Specifications for their construction are given herein. In addition a set of subroutine
shells is available with complete data declarations and instructions. A set of example
subroutines built from these shells is also available. The overall software strategy allows
the user maximum flexibility in the use of formulae and data I/O for specifying the physical
forcing, vertical structure, and output quantity and format.

TRIGTOFUNDY4

This program assembles and writes a formatted input file for FUNDY4, from node and
element files describing the horizontal mesh. The INP.dat file is a slightly modified version
of the WAVETYL input file (Lynch 1980). The node and element file formats are compatible
with output from the TRIGRID mesh generation package (Henry 1988).

= {5

x
a) 3
2
et
) 3
p
R Wiy

Figure 1. Main features of the layered mesh:
— element sides perfectly vertical
— variable mesh spacing to resolve boundary and interaal layers (a,b,c)
— uniform mesh spacing in mapped (z,y,¢) system
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GENERAL NOTES

1. The triangular horizontal grid node numbering system is retained intact by use of a
double-subscript node numbering convention. Node (I,J) indicates horizontal position I,
vertical position J. All 3-D arrays use this convention. For example U(I,J) indicates the
x-component of velocity at horizontal node I, vertical node J.

2. Recall that there are the same number of vertical nodes everywhere, but their physical
and/or relative spacing is arbitrary and at the user’s discretion. Therefore equal values of
J does not necessarily imply equal values of either z or z/h

3. The vertical coordinate z and the vertical node numbering are positive upward:

Bottom : J =1,z=—h
Top:J=NNV,z=0
where NNV is the number of vertical nodes and h is the bathymetric depth.

4. FUNDY4 is coded in FORTRAN with single precision COMPLEX data types for the
hydrodynamic variables, and single precision REAL data types for the geometric variables.
These data types must be respected in user-defined subroutines. The declarations provided
in the USER subroutine shells are complete and unambiguous. There are no implicit
declarations of data types; the standard FORTRAN 77 default is assumed. Use care
relative to mixed-mode computations; and declare any complex local variables which are
created.

5. Use SI (MKS) units everywhere. All physical quantities retain their original dimensions.

6. Time variation of the form A ezp(iwt) is assumed for all hydrodynamic variables. w
is the radian frequency; time is in seconds; A is the complex amplitude. A may be reex-
pressed in terms of the real-valued amplitude a and phaselag in degrees: A = aezxp( 'l'g:)d’ .
Equivalently, a is the complex absolute value of A; and tan(¢) = —Im(A)/Re(A).
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NODE.dat

NODE.dat is a data file containing a list of the horizontal coordinates (X,Y) and bathy-
metric depth (H) of each node in the horizontal triangular mesh. Also included is an
integer classification NTYPE for each node, indicating the type of boundary condition to
be enforced at that node.

Line 1: a single integer NN, the number of nodes in the file. Format is (*).

Line 2: a single integer MAXCON, indicating the maximum number of neighbors for any
one node in the mesh. This data is ignored. Format is (*).

Line 3: four real numbers indicating the range of the (X,Y) data following: Xmax, Ymax,
Xmin, Ymin. Format is (*). These data are ignored.

Balance of the file: exactly NN lines, each containing the data I, X(I), Y(I), NTYPE(I),
H(I) for a single node. Format is (*).

Conventions for NTYPE are as follows:

0: interior point

land boundary

island boundary
nonzero normal velocity
geostrophic outflow
elevation

Ll 2 v

corner: elevation with land or island

corner: geostrophic with land or island

corner: nonzero normal velocity with land or island
9: corner: elevation with geostrophic

10: corner: both components of velocity = zero

11: corner: both components of velocity nonzero

ELEMENT.dat

ELEMENT .dat is a data file containing a list of the triangles in the horizontal mesh. For
each triangle, there must be one line containing four integers: (L, N1, N2, N3), where L
is the element number and N1, N2, N3 are the three node numbers defining that element.
The node numbers must be ordered counterclockwise. Format is (*).

TRIGTOFUNDY4

This program will first ask for the names of the NODE and ELEMENT files to be read,
and also for the name of the FUNDY4 input file INP.dat to be written. During execution
the program will also ask for a “title” i.e. an ASCII string to be written into the the
INP.dat file to identify it; latitude to be used in computing the Coriolis parameter; for
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scaling factors for X, Y, and bathymetry; and for a minimum bathymetric depth Hmin.
These will be written into INP.dat file along with all other nodal and element information
needed.

TRIGTOFUNDY4 will also generate core FORTRAN statements for constructing Subrou-
tine BC. These will be written at the top of the INPUT file, along with any diagnostic
messages generated en route. (See the description of INPUT.dat below.)

INP.dat

INP.dat is a formatted file conforming to the input requirements of WAVETL (Lynch
1980), with minor modifications and extensions. Users of that model will recognize in the
examples the simple modifications required of old INPUT.dat files.

As written by TRIGTOFUNDY4, INPUT.dat contains extra information at the top of the
file. First, any diagnostics generated during the processing are written. Following those,
incomplete FORTRAN statements appear for every boundary node which needs data in
Subroutine BC. For nodes where elevation is specified (NTYPE = 5, 6, or 9) a line of the
form

u{1) =
will be written, with I the actual node number. For nodes on a specified nonzero normal
velocity boundary (NTYPE = 3), an identical statement will be written:

(1) =
For nodes on corners where both components of velocity are specified to be nonzero
(NTYPE = 11), two such statements are written:

u{1) =

V() =
A special case is NTYPE = 8 corners, where the nonzero total velocity is to be specified
in terms of the current speed and direction rather than U and V. In this case the file will
contain the 3-line sequence

VNORM =

U(I) = NX*VNORM

V(I) = NY*VNORM
for each such node, where (NX,NY) are numbers representing the x- and y-components of

the outward-pointing unit vector, parallel to the land at that corner. This is the
direction of flow required at such nodes.

A complete Subroutine BC can be built by filling out these statements and inserting them
at the appropriate points in the BC shell, described below.

Following all this information, the appropriate input information for FUNDY4 is written,
beginning with the line “WAVE SI” and ending with the line “XXXX”. All information
above “WAVE SI” and below “XXXX” will be ignored by FUNDY4; the balance will be
processed.



FUNDY4

FUNDY4 is the core solver. On execution it will ask for the name of the INPUT file, and
read it. It will also ask for the name of an ECHO file, into which it will write a summary

of the input as read. As execution proceeds the user-written subroutines BC, ATMOS,
VERTGRID, and OUTPUT will be called. These must be linked to FUNDY4 at run time.

ECHO.dat

This file is written by FUNDY4. It contains a header identifying the version of FUNDY4
which produced it, the title of the INPUT file, and a summary of the input read. The file
contents explain themselves.

USER.Subs

USER.Subs is a collection of user-written FORTRAN subroutines which are called by
FUNDY4. Complete specifications for these four subroutines is available in their respective
shells, which contain the overall strucure, argument list, dimensioning and declarations
sufficient for a starting point for their construction. Detailed comments in the shells
provide sufficient instructions; these are excerpted below.

Subroutine BC.

This subroutine must be modified by the user to assign barotropic boundary conditions.
There are four sections which require modification, beginning at statement labels 3,4,5,and
6 in the BC shell. Each section must begin with the appropriately labelled continue
statement, and end with a return statement.

Frequency (label 3). The first section assigns to WW the frequency of the forcing, in
radians per second. Time variation of the form ezp(iwt) is assumed. A return statement
must follow this assignment.

Elevaton (label 4). Elevation BC’s are assigned in the second section. One statement
of the form

U(J) = CVALUE
must appear for each set elevation node, where J is the node number and CVALUE is the
complex amplitude of elevation for node J. A return statement must follow the last depth
bc assignment.

Normal Velocity (label 5). Nonzero normal velocity BC’s are assigned in the third
section. One statement of the form

U(J) = CVALUE
must appear for each set nonzero normal velocity node, where J is the node number and
CVALUE is the complex amplitude of normal velocity for node J. Positive normal velocity
indicates flow out of the system. A return statement must follow the last normal velocity
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BC assignment. Note that nodes where normal velocity is a priori zero are handled by
default in FUNDY4; they are not dealt with here.

Velocity (label 6). Nonzero velocity BC’s are assigned in the last section. Two
statements of the form

U(J) = CXVEL

V(J) = CYVEL
must appear for each set nonzero velocity node, where J is the node number, (CXVEL,
CYVEL) are the complex amplitudes of the (X, Y) velocities for node J. A return statement
must follow the last velocity BC assignment.

Subroutine ATMOS.

This subroutine must be modified by the user to assign proper values to arrays ATMx and
ATMy, the kinematic stress at the top of the water column, in the (X, Y) system:

v&Y _ aTM
0z

(See equation 2 in the appendix; in that notation, ATM = h¥.) For each node where the
atmospheric forcing is nonzero, two statements of the form

ATMx(I) = XVALUE

ATMy(I) = YVALUE
must appear, where I is the node number and (XVALUE, YVALUE) are the complex
amplitudes of the forcing. If no value is assigned for a node, the value zero will be assigned
to that node by default in the main program. A return statement must follow the last pair
of assignments.

Subroutine VERTGRID.

This subroutine must be modified by the user to assign proper values to NNV (the actual
number of nodes in the vertical) and to the four arrays

Z(1,J) (vertical node coordinate)

ENZ(I,J) (vertical viscosity, Nz),

AK(I) (bottom slip coefficent, k), and

RHO(I,J) (density anomaly divided by ref. density).
for all values of I (horizontal index) and J (vertical index). The first line of VERTGRID
following the dimensioning should assign NNV. (On return to the main program, a check
of NNV relative to the main program dimensioning will be made.) Then, for all (I=1,NN)
and (J=1,NNV) there must be three assignments of the form

Z(1,J) = ZVALUE

ENZ(1,J) = NVALUE

RHO(1,J) = RHOVALUE
Finally, for all (I=1,NN) there must be an assignment of the form

AK(I) = KVALUE
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All quantities are real and have dimensions, except RHO. RHO is complex and dimension-
less (it is the density anomoly divided by the reference density). Keep in mind that Z and
J are positive upward:
Bottom: J=1, Z=-HDOWN
Top: J=NNV, Z=0

A default subroutine UNIGRID is available within FUNDY4 to assign uniform ENZ, AK,
and RHO. Its usage is explained in the VERTGRID shell.

Subroutine OUTPUT.

This routine is responsible for writing any and all computed output to the user’s specifica-
tions. All information is passed to OUTPUT, and the OUTPUT shell contains complete
specifications, array typing, etc. A standard routine DUMP is available within FUNDY4;
it writes all computed results to a user-specified file, in ASCII format. DUMP takes time

and produces a large file; use only when needed. Specifications for DUMP are contained
in the OUTPUT shell.

ADDITIONAL SUBPROGRAMS

Several useful subprograms are bundled within the core solver FUNDY4.

Function PHASELAG(Z): real-valued phase lag (in radians) of a complex scalar Z.
Function PHASELAGD(Z): real-valued phase lag (in degrees) of a complex scalar Z.
Function CABS(Z): real-valued amplitude of a complex scalar Z (FORTRAN standard).

Subroutine ELLIPSE(U,V,amaj,amin,ainc,g,apl,amn,gpl,gmin): for given complex veloc-
ity amplitudes U,V, computes 8 real-valued tidal ellipse parameters defined in Foreman
(1978). Adapted from TEMP.FOR (I0S).

Subroutine CSOLVE(...): complex unsymmetric banded matrix solver, using LU decom-
position (LABLIB standard).

Subroutine CTHOMAS(...): complex unsymmetric tridiagonal matrix solver, using the
Thomas algorithm (LABLIB standard).

Subroutine UNIGRID(...): default uniform vertical structure generator, to be called from
VERTGRID. Documentation contained in VERTGRID shell.

Subroutine DUMP(...): default ASCII write of all results, to be called from QUTPUT.
Documentation contained in OUTPUT shell.

Subroutine VERTAVG(F,FBAR,Z,NN,NNV,NNDIM,NNVDIM): computes the complex
vertical averages FBAR(I) of complex 3-D array F(I,J), for all I=1,NN. Z(I,J) is the real-
valued vertical coordinate of node (I,J). (NN,NNV) are the actual numbers of nodes in the
horizontal and vertical. (NNDIM,NNVDIM) are the corresponding dimensioning param-
eters used in the main program FUNDY4. The vertical averaging is by the trapezoidal
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rule, exact for linear elements.

VARIANTS OF FUNDY4

Two variants of FUNDY4 are available. Both differ only in the call to Subroutine VERT-
GRID.

FUNDYA4G asks for complex values of the density gradient in Subroutine VERTGRIDG.

FUNDY4R asks for complex values of the right-hand side of the 3-D momentum equation,
R, (see equation (1), appendix) in Subroutine VERTGRIDR.

The shells for VERTGRIDG and VERTGRIDR contain complete instructions. There are
no departures from the basic structure of VERTGRID.

FILES

The directory FUNDY contains the compiled programs FUNDY4.0bj, FUNDY4G.obj,
FUNDY4R.obj, and the executable TRIGTOFUNDY4.exe. The shells for the four sub-
routines BC, ATMOS, VERTGRID, and OUTPUT which comprise USER.Subs are con-
tained within USER.Shell, as FORTRAN source code. The shells VERTGRIDG.Shell and
VERTGRIDR.Shell are available as separate files in the FUNDY directory.

EXAMPLE APPLICATION

As an example, the application of FUNDY4 to the southwest coast of Vancouver Island is
presented. The 2-D triangular mesh used by Foreman and Walters (1990) appears in fig.
3, marked with NTYPE codes appropriate for a tidal simulation (Fig. 3a) and for a steady
diagnostic simulation (Fig. 3b). Application files are available in the directory SWVI

For a tidal simulation, the relevant files are
NODE.dat = NGH81-TRIG-REORD.dat
ELEMENT .dat = TRIANG81-REORD.dat.
INP.dat = SWVLinp
USER.Subs = SWVI.for
ECHO.dat = OUT.out

An example run stream is recorded in SWVI.out, which resulted from submission of the
command file SWVI.com. The file SWVIM2.dat contains the output of this run.

For the diagnostic simulation, the comparable files are
NODE.dat = NGH81-TRIG-REORD-SS.dat
ELEMENT.dat = TRIANG81-REORD.dat.
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INPUT.dat = SWVISS.inp
USER.Subs = SWVISS.for
ECHO.dat = OUTSS.out

An example run stream is recorded in SWVISS.out, which resulted from submission of
the command file SWVISS.com. The files SW VISSWINDZ dat and SWVISSWINDV.dat
contain the output of this run.

ot
[

P
4
[

Tidal Elevation

3

Figure 3a. Boundary condition codes for tidal simulation on the southwest coast of Van-
couver Island. The finite element mesh is from Foreman and Walters (1990).
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Figure 3b. As in figure 3a, with boundary condition codes for steady diagnostic simulation.
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THEORY

We solve the linearized 3-D shallow water equations with conventional hydrostatic
and Boussinesq assumptions, and eddy viscosity closure in the vertical. The density field
is presumed known and constitutes a fixed baroclinic pressure gradient. The response (3-D
velocity field plus barotropic pressure) to this forcing, combined with wind and barotropic
forcing at open water boundaries, is sought on detailed topography. For generality and
for compatibility with previous model development (LW87) we assume periodic-in-time
solutions of the form g(x,t) = Re(Q(x)e/*!), with Q the complex amplitude of ¢ and w
the frequency. The steady responses are simply the limiting case w = 0. :

The horizontal momentum equation is

. o) ov
]wV+fXV—$(N'5;)—G+R (1)
ov
N E = h¥ (Z = 0) (2)
ov
in which
R(z,y,2) = -1 f zo Vpdz is the baroclinic pressure gradient, assumed known
G(z,y) = —gV( is the barotropic pressure gradient, assumed unknown

p(z,y,2,t) is the fluid density

((z,y) is the free surface elevation

V(z,y, z) is the horizontal velocity
W(z,y, z) is the vertical velocity

w is the radian frequency

j is the imaginary unit, /=1

h(z,y) is the bathymetric depth

f = fz is the Coriolis vector

N(z,y,z) is the vertical eddy viscosity

g is gravity

(z,y) are the horizontal co-ordinates

z is the vertical co-ordinate, positive upward with z = 0 at the surface
V is the horizontal gradient (8/8z, 8/8y)
h¥(z,y) is the atmospheric forcing

k 1s a linear bottom stress coefficient.

All hydrodynamic variables are represented as complex amplitudes of time-periodic mo-
tions; and throughout we indicate by an overbar the vertical average of any quantity. The
vertical average of (1) is

_ _ ok _
jw¥ +Ex V4 2V(-h) =G+ ¥ +R (4)
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In addition we have the continuity equation

oW
37 +V.V=0 (3)
and its vertical average
jwC+ V- (AV) =0 (6)
We record also the weak form of (6):
(g 6 = (K9 V1) = = § B9 - ds (7

where () is a domain integral over (z,y); § ds is the enclosing boundary integral; fi is the
unit normal, directed outward; and ¢;(z,y) is an arbitrary weighting function. Note that
conventional horizontal boundary conditions will be enforced on either ¢ or hV - fi to close
the boundary-value problem.

The momentum equation is simplified by introduction of the surrogate velocity vari-
ables

Ve + 3V, _ Ve =3V,
+ Yz T IVy, _Yz"J%
v = ) ) 14 9 (8)
Vz=l/++l/_; ijzy‘*'_y-. (9)

which removes the Coriolis coupling:

+

jlw+ fHr* — % (N%"Z-) =G* + R* (10)

+
N =wt (:=0) ()

*
NaaLz =kv*  (z=-h) (12)

with forcing terms defined as
gt = G=%1Gy (13)
2

'(/)i — '¢’x :;]%by (14)
gt f%ify 323 R,y (15)

By inspection, the solution to (10-12) can be written as
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v¥(z) = G*P{(2) + ¥* P (2) + P (2) (16)
where the functions P,-i each satisfy the simple diffusion equation (10), forced as follows:*
PE:G=19%=0;R=0.

Pf:G=09=1R=0.
P¥:G=0;9=0;R=R* (17)

Recovery of V from v is then straightforward, using (9):

+ - + _ p-
V(z) =G<.&__+fl_) _j<‘p1_lil_)i x G

2 2
+, p- +_ p-
+\1:(—P2 + 5 )—j(——————-—P2 ! )ix‘I’
2 2
T (P;’ 4 P;) _ i (P;f - P;) (18)

expressing a superposition of responses to barotropic, wind, and density gradient forcing.
Note that the six functions P,-:t can be obtained independently at any horizontal position
by any of several methods for solving the 1-D diffusion equation.

The unknown barotropic pressure gradient G = —gV/( in (18) is determined by appli-
cation of the vertically averaged continuity equation (6). Substitution of (18) into (6) or
its weak form (7) eliminates V and produces a scalar Helmholtz-like equation in ¢ alone.
The resulting weak form is

V) -

p+ 4 P- p+ _ p-
(B )ahwe - i (A5 Jax onve
P+ 4 P- p+ _ p—
(Bt g (B "‘I’J .v¢,.>

—fﬁ\_’-ﬁ¢,‘d8+<
+< (P; + P;) h% —j (P; - P;) h?] : V¢,~> (19)

This 2-D, horizontal equation is especially amenable to Galerkin finite element solution on
simple linear triangular elements. Its solution provides the barotropic pressure response

(JwC i) + <

* The distinction between P, and P; is maintained here for its interpretive content;
but is not necessary. The merger of P, into Ps, by the alternate definition (PF : G =

0;% = %¥; R = RT) allows use of all the formulae below with the simplification P;: =0
everywhere.
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which accompanies the imposed wind, density field, and open-water barotropic boundary
conditions.

Integration of (10) from z = —h to z = 0, and use of (11,12), provides a useful relation
between 7+ and v¥(-h):

ok 7t = 9E 4 TvE(-h) = G+ B (20)
As in LW87, we find for the various Pi(2):
_ 1 k
P = SR [1 - E—sz(—h)] (21)
_ 1 = k
Pff = HPEY) [R* - ;Ps*(—h)] (22)

which may be used to avoid the calculation of the vertical averages.**

An alternate route to an equivalent statement of the horizontal problem is available
following LW87. This approach takes advantage of the fact that the bottom stress may
be expressed in terms of V, reducing the vertically averaged momentum equation to an
equivalent 2-D form. First, G* can be eliminated from (16) by use of its vertical average:

1 [ _ _
G* =2z [V"‘ R i Ps*] (23)
1

and therefore

+

v3(z2) = (P }.flz))ia* + (Pg(z) — Py(2) i;—j) iip* + (Pg(z) - Pl(z);;—j) (24)

It follows that

kvE(—h) = 7ER0E — athyp® — fER (25)
with
kPE(—h)
+ 1

=1 26
! hPE (26)
o =7EPF - %P;—'(-h) (27)

N _, k
* = rEpE zPa*(—h) (28)

Recovery of the bottom stress in the original (z,y) system, via (9), yields

** If as suggested above P; and P; are merged, replace R* with R* + ¢% in (22)
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2 2
-(M>hm +j(9:‘—°‘_)z x k¥
2 2
- (m + ﬂ-) h% + j (ﬁ* - ﬂ‘) hy (29)
Finally, use of (29) in (4) to eliminate the bottom velocity gives the equivalent 2-D system

JwV + ' xV+7V=G+¥ +R (30)

where the prime quantities f/, 7/, ¥’ and R' all contain contributions from the bottom

stress: 4+ _
f’=f—~j(T ;T )z (31)

T -; " (32)
w'=w[1+(w#)]—j(3i;—“~>zxw (33)
R'=R+%(8"+87)-i3(B*-8") (34)

As in LW87, 7%, o and ¥ depend on w * f, N(z), k, and k and thus vary with
frequency as well as (z,y); and all of the vertical detail is embodied without loss of in-
formation in the parameters f', 7/, ¥/, and R'. This 2-D system permits the classical
expression of V in terms of the gravity, wind, and baroclinic forcing:

7o ((jw-%—r')(G-‘.-‘I"-E-R')—f' X(G+‘I”+R')) (35)

Go+ T+ 17
This may in turn be substituted into the vertically integrated continuity equation to pro-
duce a Helmholtz equation equivalent to (19):

(jw+ 1")ghV( - ' x ghV( '
Gt 77 + 572 ]'V@>

(Jw( é:) + <
L ag gen [ G2 TR R -8 x M RY]
j{ KV - figid T< TR v¢,> (36)

Like (19), this equation allows computation of { as a scalar, 2-D problem subject to
barotropic boundary conditions. While the derivation of (36) is more circuitous, it provides
a simple set of recipes for converting /upgrading any 2-D shallow water solver based on
the linearized harmonic equations to the present 3-D diagnostic level. In addition the
equivalent 2-D momentum equation (30) provides some insight in the departure of the
prime quantities from their conventional 2-D forms, which is not readily obtained from the
more direct form (19). This approach is adopted in the implementation of FUNDY4.
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SOLUTION PROCEDURE

The numerical solution is implemented in four sequential steps, using a finite element
mesh of linear triangles in the horizontal:

1) The vertical structure is computed in terms of 7/, f, ¥' and R’ at each node. The
six solutions sz,:,, are computed under each node - each requires solution of a 1-D diffusion
equation, which we solve by the Galerkin method on 1-D linear finite elements. Because
these are tridiagonal systems, they are not a limiting factor in the overall computational
method.

2) The surface elevation is obtained by the Galerkin method on the horizontal grid of
triangles. Expanding the solution in terms of unknown nodal values ¢; and the triangular
basis functions ¢;:

((zy) =) (idi(z,v) (37)
J
we obtain from (36) the matrix equation

[A){¢} = {B} - {F}

(jw+ 7")ghV; — ' x ghV¢;
Gt 77 + 77

Aij = (jwojids) + <

'V¢i>
. V¢i>

Fi f Y - fid; ds (38)

g _ [ |G mOhE + R - £ x (T + R)
= G+ )7 + 17

In the present implementation all inner products are evaluated numerically, with quadra-
ture points at the nodes of the triangles. Barotropic BC’s are enforced on this system in
any of three ways:

Type I Elevation known. In this case the Galerkin equation weighted by ¢; is removed
in favor of exact specification of (;.

Type IL: V - fi known. In this case the boundary transport integral F} is evaluated
from the given BC.

Type III: Geostrophically balanced transport. In this case neither elevation nor trans-
port are known, but a geostrophic balance is assumed between them:

hV-ﬁ:?(G+\I"+R’)-f (39)

where t is the local tangential direction. (Essentially we assume AV - £ = 0.) This relation
is substituted into the transport integral F;; the known parts (¥’ + R') - t are moved into

B;; the unknown part G-t = —g Y ¢ j%i is moved to the left-side and embedded in the
matrix [A]:

N
18]
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= A; /gh3¢1

Bly =By~ [ (¥ +R)-E4ids (40)

with [ ds indicating integration over the Type III boundary only.

3) Velocity profiles. Once ( is available, we differentiate it numerically to obtain nodal
values of G by a Galerkin approximation:

> (#i4i)G5 = —(gV(¢i) (41)
J
Nodal quadrature reduces the mass matrix (¢;$;) to a diagonal matrix, greatly simplifying
this calculation. Once the G; are computed, the velocity profiles are either assembled from
memory according to (18); or recomputed by a single tridiagonal calculation under each
horizontal node.

4) Vertical velocities. Finally, we compute the vertical velocities at every node from
the continuity equation (5). To do so requires construction of a 3-D FE mesh in order to
differentiate V(z,y, z), and we follow exactly the procedure given in LW90. The horizon-
tal mesh is projected downward in perfectly vertical lines and each is discretized into the
same number of vertical elements. These are then connected horizontally in the identical
topology as the original 2-D mesh, thereby filling the volume with 6-node linear elements.
Effectively, this creates an (z,y,0) coordinate system. Unless otherwise stated, the simu-
lations here employ uniform relative vertical mesh spacing everywhere, i.e. uniform Ao.



